

ILARA-MOKIN, ONDO STATE

DEPARTMENT OF PHYSICAL AND CHEMICAL SCIENCES

2020/2021 FIRST SEMESTER B.Sc. DEGREE EXAMINATIONS

BCH 307: ENZYMOLOGY

INSTRUCTIONS: ANSWER ANY FOUR (4) QUESTIONS

TIME: 2 HOURS

- 1. a. Briefly discuss enzyme classification and nomenclature (4 marks)
 - b. Briefly explain apoenzyme, holoenzyme and coenzyme (3 marks)
 - c. Mention 5 industrial enzymes and their applications (3 marks)
 - d. Rearrange the Michealis-Menten equation to give
 - Lineweaver-Burk and (ii.) Eadie-Hoftsee plots (3 marks)
 - e. List 4 factors that affect enzyme activity (2 marks)
- 2. a. Use the Michealis-Menten equation to complete the enzymatic kinetic data set; the K_m is known to be 1 mmol/L.

[S] (mmol/L)	v (µmol/L/min)
0.5	50
1.0	-
2.0	-
3.0	-
10	-

(7 marks)

- b. Provide the diagnostic double reciprocal plots that distinguishes competitive, non-competitive and uncompetitive inhibition
 - (3 marks)
- c. For a Michealis-Menten reaction.

$$k_1 = 5 \times 10^7 \text{ M}^{-1}\text{s}^{-1}$$
, $k_{-1} = 2 \times 10^4 \text{ s}^{-1}$ and $k_2 = 4 \times 10^2 \text{ s}^{-1}$.

Calculate K_s and K_m for the reaction. Does substrate binding achieve equilibrium (5 marks) or the steady state

3. a. Discuss the catalytic mechanism of either chymotrypsin, carbonic anhydrase (10 marks) or ribonuclease

- b. For a typical Michealis-Menten equation, explain scenarios that exists when
- (5 marks) (i) $S <<< K_m$ (ii) $S >>> K_m$ (iii) $S = K_m$

- a. Derive the Michealis-Menten equation using EITHER steady state OR equilibrium approach for a single substrate catalyzed reaction (10 marks)
 - b. Using specific examples discuss the phenomenon termed suicide inhibition

(5 marks)

5. a. Briefly explain metal ion catalysis

(5 marks)

b. The effect of an inhibitor I on the rate of a single-substrate enzyme catalyzed reaction was investigated and gave the following results:

Substrate	Rate of reaction	Rate of reaction	Rate of reaction
[S] mmol/L	(Without inhibitor)	(With 0.5 M inhibitor)	(With 1.0 M inhibitor)
0.05	0.33	0.20	0.14
0.10	0.50	0.33	0.25
0.20	0.67	0.50	0.40
0.40	0.80	0.67	0.57
0.50	0.83	0.71	0.63

Determine the mode of action of the inhibitor

(10 marks)

a. An ATPase was isolated from battong saliva and the following ATP hydrolysis-rate obtained.
Determine the K_m and V_{max}

[ATP] (mmol/L)	v (μmol/L/min)
5.0	2.6
1.7	1.95
1.0	1.7
0.7	1.4
0.56	1.24

b. During a practical class, a student mistakenly ingested methanol, from your knowledge of enzyme inhibition, suggest possible implications of methanol ingestion and a possible quick remedy (first aid). Provide biochemical basis for your answer.